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Abstract —The HP 8510 time-domain network measurements are fre-
quency-domain measurements transformed to the time domain using the
inverse Fourier transform, the objective being to discriminate various
scattering centers. This computational technique benefits from the wide
dynamic range and the error correction of the frequency-domain data,
but requires a frequency-domain response measured over a wide fre-
quency range to give useful resolution in the time domain. The general-
ized pencil of function (GPOF) method, also known as the matrix pencil
method, provides for much higher resolution than the Fourier tech-
niques. A comparison of the two methods is given for the example of the
Beatty standard.

1. INTRODUCTION

HE Hewlett-Packard network analyzer HP 8510B has

built-in options for time-domain measurements. Two
modes of measurements can be performed: time band-pass
and time low-pass. The time low-pass mode simulates tradi-
tional time-domain reflectometer (TDR) measurement,
which gives the response of the device to a step or an
impulse stimulus. The time band-pass mode is a general-pur-
pose time-domain mode that allows any frequency-domain
response to be transformed to the time domain. The result is
the impulse response. Parameters obtained are the time
delay and amplitude of an impulse. The rise and fall times of
the impulse are inversely proportional to the frequency
bandwidth. If the response consists of two or more impulses
that are close to each other by twice the rise time, all one
sees in the time-domain response is a single impulse. The
two discontinuities then cannot be distinguished.

The problem with conventional FFT techniques is that, if
there are two impulses located at 7; and 7, representing
reflections from different discontinuities, then in order to
resolve them it is necessary to have data in the frequency
domain up to a bandwidth of 1/(r;, — 7;) with 75 > 7.
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However, this limitation of the FFT can be avoided if one
uses a parametric technique. For the parametric technique
one tries to fit a sum of complex exponentials to the fre-
quency-domain data. Then the transform in the time domain
would consist of impulses. Theoretically, to resolve two im-
pulses in the time domain, all one needs in the frequency
domain are eight samples of the measurements. These mea-
surements need not be over a bandwidth of 1/(r,—1,).
However, because of noise in the data, more than eight
samples are necessary in practice. Hence by using parametric
estimation techniques it is possible to go beyond the limita-
tions of Fourier techniques and provide a general framework
for the gating procedures which are the strength of the time
domain.

The particular parametric estimation scheme to be used is
the generalized pencil of function technique (GPOF). Not
only is this technique computationally very efficient; of the
many existing parametric techniques available in the signal
processing literature, it has the least statistical variance of
the estimates in the presence of noise [1], [2]. From a
statistical point of view, the GPOF has a smaller variance, as
shown in [3], than the Prony-type method [9].

In this paper the GPOF is used to improve the resolution
of the HP 8510B data in the time domain instead of the
conventional Fourier techniques [8].

II. THE NUMERICAL METHOD

The vector network analyzer standard outputs are complex
reflection or transmission § parameters as a function of
frequency. In the case of reflection, §;,(f) can be seen as a
general response function, R(s), given in the Laplace trans-
form domain as

R(s)=F(s)H(s) (1)

where F(s) and H(s) are the arbitrary exciting function and
the Laplace transforms of the system’s impulse response for
t > 0, respectively, and s is the complex frequency. In the
case of the driving function being an impulse,

F(s)=1. (2)

By expressing the transfer function as an infinite set of pole
singularities, according to the theory of complex variables,
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H(s) is assumed to be written in a residue series as

M 4,
H(s)= Z ;j, Re[s;]<0 (3)

=1 i

where s; is a ith complex pole of H(s), and A; is the
corresponding residue. When the inverse Laplace transform
of (3) is taken, the time-domain response, #(¢), is written as

M
r(t)= Y A"
i=1

4

Further, by solving for complex poles and residues from
frequency response function we are able to directly recon-
struct the time-domain response without having to perform
an inverse Fourier transform.

For time-domain responses of the form

M
r(t)= X ad(t—1,) (5)

i=1

the corresponding complex frequency-domain representation
is

M
Su(s) = X ae™. (6)

i=1

Discretizing frequency and writing s = kA f, we have

M
y(k) =S (k)= ¥ a;e P4k ¢

i=1

(7

where k=0,1,---,N—1, and n, stands for additive noise
introduced in the measurement. As mentioned before, a; are
the complex residues. Let z;=e 7274 for notational
brevity; then z; are the poles in the Z plane. Following the
GPOF method [1], we are defining matrices Y; and Y, as

Yo Y1 Yo-2 YL-1
Y,= y’l Y2 Yo-1 YL (8)
YN-'L—I YN-L YN-3 YN-2
and
N Y2 Yo-1 YL
Y, = Y.2 Y3\ T Y YL+ ©)
yN.-L YN-L+1 YN-2 YN
Matrices Y; and Y, can be written as
Y,=Z,4Z, (10)
Y,=2,4Z,Z, (11)
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where
1 1 1
21 %) M
Zl= :
_Z{V;L—l ZN-L-1 ZN-L—1
1z zft
1 z 241
Z,= ? 2 (12)
1 z zi !
L M M
[z, © 0]
0 z, -+ 0
Zy=| . and
[0 0 Zy |
[a, O 0
0 a, 0
A= (13)
0 0 ay

Then we create matrix pencil Y, — zY;, which can be
represented as a generalized eigenvalue problem

Yz_' ZY1=ZlA(ZO_I/\)Zz. (14)
That is, when M <L < N-—M, then the poles z;,, i=
1,-++, M, are the generalized eigenvalues of the matrix pen-
cil Y, — zY;. Also, the rank of the matrix pencil is equal to
the number of signal poles, M, unless z = z;. Generalized
eigenvalues of the matrix pencil, i.e., signal poles, are ob-
tained by using a singular value decomposition (SVD) algo-
rithm. We consider the matrix product Y;'Y,, where Y} is
the pseudo inverse of Y,, and is defined by

vy =rf(vyi)™ (15)
where superscript H denotes the conjugate transpose opera-
tion of a matrix. Note that

Y\Y{ =1 (16)
Referring to (10) and (11), one can write
Y'Y, =2F4712}2,47,Z, a7
where A4~ ! denotes the regular inverse. Then
Y{Y,=252,Z,. (18)
There exist vectors p;, i=1,---, M, such that
Y Yip=p (19)
and
YiY,p=z,p, (20)

Vectors p; are then called the generalized eigenvectors of
the matrix pencil Y, ~ zY,;. Singular value decomposition (7]
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is used to compute the pseudo inverse matrix Y;", namely

M
— H
Yl - Z ou,

(21)
i=1
or
Y,=UDVH (22)
then
Y =vD~Uu# (23)
vs(here U=[uy, -, uyl, V=I[vy, - -,vyl, and matrix D is
given as
o 0 0
D= ? 72 (24)
6 0 - oy

U and V are matrices of so-called left and right singular
vectors, respectively. Since

Y Y, =wH (25)
substituting (23) into (20) and using (19) we obtain
VD~ WHY WHp, = z,p; (26)
and then left multiplying both sides by V¥ we have
VAEVD-IURY, WHp, = 2,V Hp,. 27

Note that VAV =T and i=1,---, M. Let us define matrix Z
and vectors z; as

Z=D"WHY,V and z,=V"p, (28)
Then (27) is reduced to a square matrix eigenvalue problem
(Z-2z,1)z;=0. (29)

The size of the matrix Z is M X M, and z; and z, are
eigenvalues and eigenvectors of Z, respectively. If the num-
ber of poles, M, is not known, it can be estimated from the
singular values

0'120'22'”>0’M>“'>a-min(N—L,L) (30)

SINCE Opry 1= *** = Opinv—r, 1y = 0 for noiseless data. In the
case of noisy data y,, the largest M singular values of Y,
7y, * , 03, should be chosen in (21), and the resulting Y7 is
called the truncated pseudo inverse of matrix Y;.

Computer code that solves for signal poles out of given
frequency data has been developed in FORTRAN. A

Hewlett-Packard HP9000/370 workstation running the HP-

UX operating system is used as a computational platform.
The input data acquisition from network analyzer HP 8510 is
performed using HP-UX Basic, via IEEE-488 interface bus
(HP-IB). First, network analyzer stimulus parameters are
properly set and appropriate calibration is performed; then
the reflection coefficient S;;(k) is transferred to the com-
puter. The GPOF method is applied, and the time-domain
impulse response is displayed on the screen.

III. EXPERIMENTAL RESULTS

As an example consider the Beatty standard, presented in
Fig. 1. There are two impedance step discontinuities at the
standard. If the output port is terminated with 50 Q and the
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Fig. 1. Multiple reflections from the Beatty standard terminated with
a matched load.
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Fig. 2. Calculated impulse response of the Beatty standard.

standard is excited with an impulse at port 1, there will be
reflections due to the discontinuities. From a theoretical
point of view there will be four dominant reflections, as
shown in Fig. 2. The expected amplitude and time delay of
the impulses are given in Table 1.

Next we utilize the HP 8510B and measure the §,; param-
eter from 45 MHz to 18 GHz using 801 data points. The
magnitude and the phase response are given in Fig. 3.
Utilizing the HP 8510B internal frequency to time conver-
sion technique, one obtains the plot in Fig. 4. The first three
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TABLE 1
CALCULATED IMPULSE RESPONSE OF BEATTY STANDARD
TERMINATED WiTH 50 )

Impulse Delay Time (ps) Amplitude
1. 83.39 333.333E-3
2. 583.74 296.296E-3
3. 1084.08 32.922E-3
4. 1584.43 3.658E-3
S11 log MAG Sli‘ P4
REF -45.0 dB REF 200.0 °
10.¢ dB/ 100.0 °/

AYAVAVAVAAVAVAYA

N
N

N
N\

START
STOP

2.045000000 GHz
18.000000000 GHz

Fig. 3. The magnitude and phase response of the Beatty standard
from 45 MHz to 18 GHz.
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Fig. 4. Time-domain impulse response, using standard built-in band-
pass option on HP 8510B, with 18 GHz bandwidth.
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Fig. 5. The magnitude and phase response of the Beatty standard
from 45 MHz to 2 GHz.
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Fig. 6. Time-domain impulse response, using standard built-in band-
pass option on HP 8510B, with 2 GHz bandwidth.

impulse returns are quite clear and the fourth appears where
it is marked by an arrow. Comparing the measured values
with the theoretical values of Table I demonstrates a reason-
able agreement. Next, the bandwidth of the sweep is reduced
from 18 GHz to 2 GHz. In this case the magnitude and the
phase response are plotted in Fig. 5. If the inverse transform
is taken with the HP 8510B internal technique, one obtains
the time-domain response of Fig. 6. Observe that, as ex-
pected, no information is available about the discontinuities.

The GPOF is now applied to the same 2 GHz bandwidth
data as plotted in Fig. 5. The technique computed that there
are three dominant singular values from singular value analy-
sis. So the value for the parameter M is set to be equal to 3.
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Fig. 8. The magnitude and phase response of the Beatty standard
from 4 to 6 GHz.

The amplitude and location of the impulses are shown in
Fig. 7. Observe that the first three impulses have been
identified and their positions quite accurately located, and
that the fourth impulse is not visible. The GPOF is now
applied to the same 18 GHz bandwidth data as shown in Fig.
3. The results are also plotted on Fig. 7. Observe that, for
this example, reducing the bandwidth from 18 GHz to 2 GHz
had no visible impact on the time-domain resolution of the
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Fig. 7. Time-domain impulse response obtained using GPOF with 2 GHz (dotted) and 18 GHz (solid) bandwidth.
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Fig. 9. Time-domain impulse response, using standard built-in band-
pass option on HP 8510B, with 2 GHz bandwidth.

first three impulses. This is because a parametric technique
such as GPOF deals with the number of samples of data
points rather than with the actual bandwidth of the data.
This is the strength of the GPOF over conventional FFT
techniques.

Next the frequency-domain response of the Beatty stan-
dard is generated over 4-6 GHz. The magnitude and the
phase are plotted in Fig. 8. The internal HP 8510B standard
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Fig. 10. Time-domain impulse response obtained using GPOF, with a bandwidth of 4-6 GHz.
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Fig. 11. Multiple reflections from the Beatty standard terminated with

short.

TABLE II
CALCULATED IMPULSE RESPONSE -OF BEATTY STANDARD
TERMINATED WITH SHORT

Impulse Delay Time (ps) Amplitude
1 83.39 - 333.333E-3
2 583.74 296.296E-3
3 667.13 790.123E-3
4, 750.52 263.374E-3
5. 833.91 87.791E-3
6. 917.30 29.264E-3
7 1000.69 9.755E-3
8 1084.08 29.670E-3
9. 1167.4% 176.667E-3

10. 1250.87 204.486E-3
11. 1334.26 117.176E-3

12. 1417.65 48.813E-3

7=

time band-pass response is shown in Fig. 9. Observe that no
useful information about the discontinuities can be ex-
tracted. However, the GPOF technique applied to the same
data gives three impulses, as shown in Fig. 10. Observe that
the fourth impulse is not visible for this bandwidth data.
Time delay of the first three impulses is within 3,5% of the
theoretical results, while the amplitude of the first impulse is
off by 1.37%, the second by 2.5%, and the third by 6.67%.
The CPU time needed to compute the time-domain response
by using the GPOF in Figs. 7 and 10 is of the order of 4 s on
an HP9000 /370 workstation.

As an even more convincing example, consider the Beaity
standard terminated with a short (Fig. 11). The expected
impulse response is given in Table II and in Fig. 12.
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Fig. 12. Calculated impulse response of the Beatty standard terminated with short.
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Fig. 13. The magnitude and phase response of the Beatty standard
terminated with short, from 45 MHz to 18 GHz.

Utilizing the HP 8510B, the S;; parameter is measured
from 45 MHz to 18 GHz, using 801 data points. The magni-
tude and the phase response are given in Fig. 13. Applying
the HP 8510B internal frequency to time conversion tech-
nique, one obtains the plot in Fig. 14. Only impulses 1 and 3
(see Table II) are clearly observable. Fig. 15 shows unwin-

START -258.9 ps
STORP 1.8 ns

Fig. 14, Time-domain impulse response of shorted Beatty standard,
using standard built-in band-pass option on HP 8510B, with 18 GHz
bandwidth.

dowed time-domain impulse response, obtained from the
same 18-GHz-wide data set. Resolution is enhanced at the
expense of the higher ringing and reduced dynamic range.
Next, the bandwidth of the sweep is reduced to the 4—6.5
GHz range. In this case the magnitude and the phase re-
sponse are plotted in Fig. 16. If the inverse transform is
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Fig. 15. Time-domain impulse response of shorted Beatty standard,
using standard built-in band-pass option on HP 8510B, with 18 GHz

bandwidth, windowing option turned off.
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Fig. 16. The magnitude and phase response of the shorted Beatty
standard from 4 to 6.5 GHz.

taken with the HP 8510B internal technique one obtains the
time-domain response of Fig. 17. Fig. 18 shows unwindowed
time-domain response. Observe that, as expected, no infor-
mation is available about the discontinuities.

The GPOF is now applied to the same 4-6.5 GHz data as
plotted in Fig. 16. The amplitude and location of the im-
pulses are shown in Fig. 19. If the GPOF is applied to 18
GHz bandwidth data from Fig. 13, the impulse response of
Fig. 20 is obtained. Observe again that, for this example,
reducing the bandwidth from 18 GHz to 2.5 GHz had no
visible impact on the time-domain resolution (compare Fig.
20 and Fig. 19). When Figs. 19 and 12 are compared, the
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S11 LINEAR
REF .02 Units

1020.2 mUnits/

Input data 4 |- 6.
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START ~250.0 ps
STOP 1.8 ns

Fig. 17. Time-domain impulse response of shorted Beatty standard,
using standard built-in band-pass option on HP 8510B, with a bandwidth
of 4 to 6.5 GHz.
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Fig. 18. Time-domain impulse response of shorted Beatty standard,
using standard built-in band-pass option on HP 8510B, with a bandwidth
of 4-6.5 GHz, windowing option turned off.

time delay of the first four impulses of Fig. 19 is within 0.6%
of the theoretical results, while the amplitude of the first
impulse is off by 0.5%, the second by 3.1%, the third by
1.9%, and the fourth by 4.4%. Because of the memory
limitations of the HP9000/370 workstation (8 MB), calcula-
tions of the impulse response in Figs. 19 and 20 are per-
formed on a VAXstation 3500 (32 MB of memory). This
particular example, which is an extreme case, involves solving
for eigenvalues of a 400 by 400 matrix, and the elapsed CPU
time is of the order of 1 h.
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Fig. 19. Timé-domain impulse response of shorted Beatty standard obtained using GPOF, with a bandwidth of 4—6.5 GHz.
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Fig. 20. Time-domain impulse response of shorted Beatty standard obtained using GPOF, with a bandwidth of 18 GHz.
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IV. ConcLusion

The generalized pencil of function technique (GPOF) is
used for extraction of the impulse response out of limited
frequency bandwidth data. The examples show that a para-
metric technique such as the, GPOF can provide accurate,
reliable results with a high degree of resolution. even when
the FFT-based technique fails. The method has wide appli-
cation in antenna measurements, location of transmission
line discontinuities, and radar cross-section measurements. It
could be implemented as a standard firmware feature on
advanced vector network analyzers.
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